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This article addresses the scaling and spectral properties of the advection–diffusion
equation in closed two-dimensional steady flows. We show that homogenization
dynamics in simple model flows is equivalent to a Schrödinger eigenvalue problem
in the presence of an imaginary potential. Several properties follow from this
formulation: spectral invariance, eigenfunction localization, and a universal scaling
of the dominant eigenvalue with respect to the Péclet number Pe. The latter property
means that, in the high-Pe range (in practice Pe � 102–103), the scaling exponent
controlling the behaviour of the dominant eigenvalue with the Péclet number depends
on the local behaviour of the potential near the critical points (local maxima/minima).
A kinematic interpretation of this result is also addressed.

1. Introduction
Dispersion of passive tracers is a central problem in fluid dynamics with practical

implications for environmental sciences (pollutant dispersion), chemical reaction
engineering (mixing), and more generally in all processes involving moving fluid
phases.

Given a velocity field v(x, t), dispersion problems are described by the second-order
advection–diffusion equation (ADE)

∂φ

∂t
= −∇ · (vφ) + ε∇2φ = L[φ], (1.1)

where φ(x, t) is the concentration field, and ε = Pe−1 is the reciprocal of the Péclet
number.

The study of (1.1) in fluid dynamics is aimed at determining how the structure and
the qualitative properties of a velocity field determine and modify the dispersion
dynamics (Batchelor 1956). In unbounded flows, the class that has been most
investigated (see Childress & Soward 1989; Fannjiang & Papanicolau 1994; Majda &
Kramer 1999 and references therein), the dispersion features are associated with
statistical indicators (such as the mean square displacement) which are grounded
on the equivalence between (1.1) and a stochastic Langevin equation (Castiglione
et al. 1999). Most studies consider infinitely extended periodic flows (cellular flows),
and the hypothesis that the flow domain is infinitely extended makes it possible
to describe the asymptotic (long-distance and long-time) properties of (1.1) by
means of a pure diffusion equation with constant tensor diffusivity (referred to
as the effective diffusivity), by applying homogenization and perturbation techniques
(Bensoussan, Lions & Papanicolau 1978; Majda & Kramer 1999). Consequently, the
basic quantity for approaching mixing and dispersion in open unbounded flows is
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the effective diffusivity, meaning that different dispersion regimes can be identified
by considering the scaling of the effective diffusivity with the Péclet number. In
particular, Fannjiang & Papanicolau (1994) found different dispersion regimes in
two-dimensional autonomous flows, such as the convection-enhanced regime, for which
the effective diffusivity is proportional to the square root of the Péclet number. The
physical interpretation of the coupling between advection and diffusion in open flows,
which leads to a nonlinear dependence of the effective diffusivity on the diffusion
coefficient, is connected to the presence of channels and stagnation regions, which can
be detected through the structure of the streamfunction (in two-dimensional flows or
in three-dimensional simple flows), see e.g. Childress & Soward (1989).

In this article, a different class of flows is investigated, namely closed flows, i.e. flows
in bounded domains, which is the natural physical setting for approaching mixing in
batch stirred equipment and for analysing how stretching and folding mechanisms
cope with diffusion in order to determine homogenization. The analysis of this
problem has been carried out using the direct numerical simulation of (1.1) (Toussaint
Carriere & Raynal 1995; Toussaint et al. 2000; Giona, Cerbelli & Adrover 2002;
Cerbelli, Adrover & Giona 2003) and different scaling regimes have been observed,
depending on whether the velocity field gives rise to non-chaotic, partially or globally
chaotic Lagrangian kinematics (Ottino 1989). For closed and bounded flows, the
concept of dispersion regimes is properly addressed within a spectral characterization
of the advection–diffusion operator (or the Poincaré operator associated with it in
time-periodic flow fields) (see Giona et al. 2002), in terms of the scaling of the
eigenvalue spectrum vs the Péclet number (Cerbelli et al. 2003).

The aim of this article is to propose a new approach to dispersion phenomena in
bounded two-dimensional autonomous flows. This approach is based on the concept
of imaginary potentials (see § 3.1) which allows an interpretation of all the salient
features of dispersion in a simple and rigorous way. Specifically, we show that the
advection–diffusion equation in simple two-dimensional flows possesses universal
features, and this phenomenon has a one-to-one correspondence with the localization
properties of the eigenfunctions. The results obtained can be generalized to interpret
more complex flows.

2. Homogenization in closed flows
As outlined in the Introduction, the interaction between advection and diffusion

has been theoretically investigated mainly in the case where the scalar field evolves
in an infinitely extended space, i.e. R2 or R3, in the presence of a spatially periodic
flow generated by the repetition along the coordinate axes of a unit flow cell structure
(cellular flow). While it is beyond the aim of this article to provide an overview of
results and techniques used to approach advection–diffusion in unbounded flows (a
comprehensive review of methods and results can be found in Majda & Kramer
1999), it is nevertheless useful to stress the physical setting of the problem, in order
to highlight to what extent it is different from the homogenization dynamics of an
advecting–diffusing scalar field that evolves in a closed bounded domain.

When investigating advection–diffusion in a cellular flow (with vanishing average
velocity), the focus is to determine how the flow structure impacts upon the dynamics
of a scalar concentration field initially localized onto a bounded set (e.g. in the limit,
the dynamics of a Dirac’s δ-distribution). By envisioning the advection–diffusion
equation as the Fokker–Plank formulation of the corresponding Langevin equation
of particle kinematics, a first quantitative characterization of dispersion is to determine
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how the size of a cloud of tracers, initially localized in the given bounded region,
depends on time in the asymptotic limit. The main physical observation that motivates
the analytical developments is that, given long enough time, the characteristic
lengthscale defining the ‘size of the cloud’ will be very much larger than the one
defining the scale of spatial flow variation (i.e. the length of the unit cell).

Thus, dispersion phenomena in unbounded domains described by (1.1) prove
equivalent (the proper mathematical setting of this equivalence is addressed in
Bensoussan et al. 1978; Majda & Kramer 1999) to an anisotropic diffusion process,
characterized by a constant tensor diffusivity (effective diffusivity tensor) D∗, which is
a constant ‘bulk property’ of the flow when the convection process is observed at such
a macroscopic scale. The Lagrangian interpretation of this result is that the structure
of any initial swarm of particles will asymptotically approach an ellipsoid, whose
principal axes, say di (i = 1, n, n= 2, 3) scale with time according to di ∼

√
2Dit where

Di are the eigenvalues of D∗, which, since D∗ is symmetric and positive definite, are
real and positive.

From these observations, it is clear that a quantitative characterization alternative
to that used for unbounded flows must be sought if one is to describe the advection–
diffusion process in a closed bounded flow, i.e. where the flow domain is a bounded
manifold M, characterized by a finite lengthscale (diameter). Two subcases can be
considered, according to whether the manifold possesses a non-empty boundary
(e.g. M is a given region of Rn, n = 2, 3, delimited by a closed surface), or M is a
boundaryless manifold (e.g. the two-torus, the three-torus, the surface of a sphere, and
so on). In the case where M possesses a non-empty boundary, say ∂M, by the term
closed flow we mean the physical setting specified by the following two conditions:
(i) the boundary is impermeable to the flow, i.e. v · n = 0 on ∂M, n being the unit
vector normal to the boundary at any given point of ∂M, and (ii) the diffusive flux
of passive scalar φ through ∂M vanishes. This implies that the overall flux through
the boundary also vanishes and, consequently, the integral of the concentration field
over the bounded domain M is conserved. Bounded closed flows are particularly
important in theoretical and applied fluid dynamics, since they represent realistic
models of laboratory flows (driven cavity, flow between concentric/eccentric cylinders,
etc.) and of engineering applications (closed stirred vessel), see e.g. Ottino (1989).
Moreover, they provide the most convenient setting for studying the global properties
of advection, associated with the folding of material lines and surface elements, and
with the occurrence of Lagrangian chaos (Ottino 1989).

Restricting our focus to autonomous deterministic flows, it turns out that spectral
theory provides the key tool for approaching homogenization dynamics in bounded
closed flows. Indeed, it has been proved that, under fairly general conditions on the
velocity field v, the advection–diffusion operator L possesses a pure point spectrum
composed of (possibly complex) separated eigenvalues λn = − λR

n + iθn (λR
n � 0), n =

0, 1, . . . , and the corresponding eigenfunctions form a basis for the functional space
of square summable functions that satisfy the proper set of boundary conditions
expressing the closed structure of the flow (Agmon 1962, 1965). In passing, we note
that the spectrum of L in the unbounded case may be continuous. The reciprocal of
the real parts of the eigenvalues define the time constants τn = 1/λR

n associated with
the exponential decay characterizing each of the invariant subspaces spanned by the
eigenfunctions. The worst possible (i.e. slowest) case is represented by the eigenvalue
possessing the real part with the smallest modulus. Given a generic initial condition, it
is this timescale that will define the asymptotic dynamics of homogenization starting
from a generic initial distribution. Therefore, the first quantitative characterization
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of mixing in bounded closed autonomous flows is to determine how the eigenvalues
scales with Pe and depend upon the structure of the velocity field.

3. Statement of the problem
Consider the ADE for a scalar concentration field defined on the two-dimensional

torus (i.e. on the unit square I2 = {(x, y) | 0 � x, y � 1}) with opposite edges
identified) for a simple velocity field: v(x) = (0, sin(2πx)), where x = (x, y). This model
is referred to as the autonomous sine flow (ASF) and has been widely investigated (Liu,
Muzzio & Peskin 1994; Giona & Adrover 1998). For ASF, the advection–diffusion
operator becomes

L[φ] = − sin(2πx)
∂φ

∂y
+ ε

(
∂2φ

∂x2
+

∂2φ

∂y2

)
, (3.1)

with the boundary conditions

φ(x, 0, t) = φ(x, 1, t),
∂φ(x, y, t)

∂y

∣∣∣∣
y=0

=
∂φ(x, y, t)

∂y

∣∣∣∣
y=1

,

φ(0, y, t) = φ(1, y, t),
∂φ(x, y, t)

∂x

∣∣∣∣
x=0

=
∂φ(x, y, t)

∂x

∣∣∣∣
x=1

,


 (3.2)

and with the initial condition φ(x, t)|t=0 = φ0(x). The boundary value problem defined
by (3.1) and by the periodic boundary conditions (3.2) is equivalent to a problem
defined on the two-dimensional torus (which is a boundaryless manifold) in that
periodic boundary conditions on the scalar field and the periodicity of the advecting
flow field imply that the net flux of the scalar field leaving the unit square at any
point of the boundary re-enters the system at the corresponding point on the opposite
edge.

Despite its formal simplicity, the ASF is a valid and interesting prototypical model
flow for addressing the coupling between advection and diffusion in two-dimensional
autonomous flows in closed domains (Giona et al. 2002).

For closed and bounded flows, a complete characterization of homogenization
dynamics generated by the operator L can be achieved through its spectral
(eigenvalue/eigenfunction) properties. The most relevant quantity is the dominant
eigenvalue (and the corresponding eigenfunction), that is, the eigenvalue possessing
the largest real part. The dominant eigenvalue defines, for generic initial conditions, the
slowest timescale of relaxation toward the equilibrium condition which corresponds to
the constant profile φeq(x) uniform throughout the flow domain (by mass conservation
this is equal to the mean value of the initial concentration φ0(x)).

The salient spectral feature of the sine flow (which is shared by two-dimensional
autonomous flows in closed domains, such as, e.g., the driven cavity flow) is the
occurrence of two eigenvalue branches (Giona et al. 2002; Cerbelli et al. 2003): (i) a
diffusive branch, the eigenvalues {λn} of which scale linearly with ε, λn,dif ∼ ε, and
(ii) a convective branch, the eigenvalues of which scale as λn,con ∼

√
ε. The latter

branch qualitatively possesses the same scaling behaviour as observed in unbounded
cellular flows (Fannjiang & Papanicolau 1994), and referred to as convection-enhanced
diffusion.

3.1. Homogenization and imaginary potentials

The occurrence of two different spectral branches, as well as other properties of
the advection–diffusion equation, can be explained by introducing the following
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representation:

φ(x, y) = e−i2πmyψ(x), (3.3)

where m is an integer, and i =
√

−1. By substituting (3.3) into (3.1), the ADE splits
into a countable family of one-dimensional problems associated with the operators:

L[ψ](x) = ε
d2ψ(x)

dx2
− 4πm2εψ(x) + i2πm sin(2πx)ψ(x). (3.4)

For m = 0, the eigenvalues of L scale diffusively, while for m �= 0 an effective coupling
between advection and diffusion takes place. This leads to a non-trivial dependence
of the eigenvalues upon ε.

Equation (3.4) indicates that L[φ] is the linear combination of two operators: a
diagonal operator −4πm2εψ , and the second-order complex-valued operator A[ψ],
defined by

A[ψ](x) = ε
d2ψ(x)

dx2
+ iVm(x)ψ(x), (3.5)

where Vm(x) = 2πm sin(2πx). The operator A can be viewed as a Schrödinger operator
in the presence of an imaginary potential iVm(x) defined on the unit circumference (i.e.
on the unit interval ]0, 1[ with periodic boundary condition). In fact, the imaginary
nature of the potential implies that A is a dissipative operator (see below). For this
reason, we will use the wording ‘family of potentials associated with a velocity field’
to indicate the relationship between Vm(x), and v(x), and this should not be confused
with the concept of velocity potential of classical fluid dynamics.

Without loss of generality, we consider the case m = 1, dropping the subscript m,
i.e. defining V (x) = V1(x) (this is sensible, as the dominant eigenfunction of L is
obtained for m = 1).

3.2. Functional relations for the eigenvalues

Some significant properties of the advection–diffusion operator can be obtained by
investigating the functional-theoretical properties of the operator A defined by (3.5).
Let us first introduce some basic notation. The eigenfunctions of A are complex-
valued functions belonging to the functional space L2

per(]0, 1[) of square summable

periodic functions in the interval ]0, 1[. The functional space L2
per(]0, 1[) is a Hilbert

space which has the inner product

(f, g) =

∫ 1

0

f (x)g(x) dx, f, g ∈ L2
per(]0, 1[), (3.6)

where g(x) is the complex conjugate of g(x). The natural L2-norm is induced by the
inner product (3.6): ‖f ‖L2 = (f, f )1/2.

Let µ = µR + iω be an eigenvalue of A, and ψ the corresponding eigenfunction:

ε
d2ψ(x)

dx2
+ iV (x)ψ(x) = µψ(x). (3.7)

Multiplying (3.7) by ψ(x), and integrating over ]0, 1[, it follows that

−ε‖Dψ‖2
L2 + i(V ψ, ψ) = µ‖ψ‖L2, (3.8)

where Dψ(x) = dψ(x)/dx, i.e.

µR = −
ε‖Dψ‖2

L2

‖ψ‖2
L2

, ω =
(V ψ, ψ)

‖ψ‖2
L2

. (3.9)
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Figure 1. Spectrum of the operator A: ◦, ε = 10−3; •, ε = 2 × 10−4.

Since ψ(x) = constant is not an eigenfunction for A unless V (x) = constant, this
expression for µR indicates that the eigenvalues of A possess a strictly negative real
part that ensures dissipativity.

Another useful expression for the eigenvalues of A follows by integrating (3.7) over
]0, 1[. By enforcing periodicity, the integral of d2ψ(x)/dx2 vanishes; thus one obtains

µ

∫ 1

0

ψ(x) dx = i

∫ 1

0

V (x)ψ(x) dx, (3.10)

which can be expressed as µ(ψ, 1) = i(ψ, V ).

4. Universality in the eigenvalue scaling
4.1. Spectral invariance and localization

The eigenvalue spectrum of the operator A for V (x) = 2π sin(2πx) is depicted
in figure 1 for different values of ε. The spectrum possesses a fork-like shape
corresponding to the presence of both complex (forming the two arms of the fork)
and purely real eigenvalues. One observes that the slowest decaying eigenvalues are
complex-valued.

Spectral invariance characterizes the eigenvalue distribution of A: at small ε

values the eigenvalues are located on a invariant set as depicted in figure 1. This
phenomenon has been observed by Hatano & Nelson 1996 in the study of the non-
Hermitian Schrödinger equation in the presence of an imaginary vector potential
(corresponding to the action on a quantum particle of a magnetic field) superimposed
on a random potential (see further Goldsheid & Khoruzhenko 2000).

In order to characterize the dispersion properties of the ADE, the most important
spectral feature of the operator A is the localization of the eigenfunctions belonging
to the complex-conjugate arms of the spectrum. Figure 2(a) depicts the modulus
|ψ(x)| of the dominant eigenfunction for several values of the Péclet number, and
shows that the eigenfunctions are strongly localized around the critical point xc = 1/4
of the potential. In fact, the dominant eigenfunctions ψε(x) for different ε → 0 can
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Figure 2. Dominant eigenfunction of the operator A for different values of the Péclet
number (ε = Pe−1). (a) |ψ(x)| vs x. The arrow indicates increasing values of Pe,
Pe = 5 × 102, 103, 5 × 103, 104, 5 × 104, 105, 5 × 105. (b) Validity of (4.1) for rescaling the
eigenfunction: A(ε)|ψ | vs (x − xc)/β(ε), for Pe = 103, 104, 105, 106.

be rescaled into a single master curve g(ξ ) (see figure 2b):

ψε(x) = A−1(ε)g(ξ )|ξ=(x−xc)/β(ε) (4.1)

where A(ε) is a normalization constant, and the scaling function β(ε) > 0 is
proportional to ε1/4 (see § 4.2 for a theoretical justification of this result).

The eigenfunctions depicted in figure 2 are normalized so that (ψR, 1) = (ψI , 1) = 1,
where ψR(x) and ψI (x) are the real and the imaginary part of ψ(x), respectively, and

|ψ(x)| =
√

ψ2
R(x) + ψ2

I (x). The rescaling of the eigenfunction into a single master
curve has been obtained by setting A(ε) = β(ε). A similar behaviour occurs for the
other eigenfunctions of the spectrum associated with complex eigenvalues.

4.2. Universality

The localization property of the eigenfunctions for the second-order operator A
in the presence of an imaginary potential is the indicator of a universal scaling
characterizing the advection–diffusion equation. In order to address this issue, let us
first consider a particular class of periodic potentials defined by the properties that:
(i) V (x) possesses a single local maximum at x = 0, and a single local minimum at
x = xm > 0, such that V (0) = −V (xm), and that (ii) V (x) near x = 0 and x = xm attains
the same nonlinear behaviour characterized by the same exponent γ :

V (x) = VM − V1|x|γ + o(|x|γ ) for |x| < η

V (x) = −VM + V1|x − xm|γ + o(|x − xm|γ ) for |x − xm| < η,

}
(4.2)

where η > 0. For example the sine flow model falls into this class by considering the
translation x ′ = x − 1/4, and is a quadratic potential, i.e. γ = 2. In the ‘pathological’
case of a potential V (x) which possesses maxima and minima, in the neighbourhood
of which V (x) is constant (flat critical points), the value γ = ∞ can be assigned to
these critical points, since γ = ∞ can be viewed as the limit value for the exponents
γn n = 1, 2, . . . associated with an analytic sequences of potentials Vn(x) converging
to V (x).
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Since we are considering the behaviour of the eigenvalues and eigenfunctions as
ε → 0, we will indicate explicitly their dependence on ε when µ = µ(ε) and ψ = ψε(x).

Let us assume (4.1), i.e. ψε(x) = A−1(ε)g(x/β(ε)). By substituting this expression
into (3.7), and performing the change of variable ξ = x/β(ε) it follows that

−µR(ε) =
ε

β2(ε)

∫ 1/2β(ε)

−1/2β(ε)

|Dg(ξ )|2 dξ∫ 1/2β(ε)

−1/2β(ε)

|g(ξ )|2 dξ

, (4.3)

where Dg(ξ ) = dg(ξ )/dξ . Since the master function g(ξ ) is vanishingly small outside
a narrow interval centred around ξ =0 and since, for ε → 0, the integration limits
approach ±∞, (4.3) implies

−µR(ε)  C
ε

β2(ε)
, (4.4)

where C =
∫ ∞

−∞ |Dg(ξ )|2 dξ/
∫ ∞

−∞ |g(ξ )|2 dξ .
Let us now consider (3.10). By applying the scaling assumption for ψε(x), and by

making the same approximation regarding the integration limits, one obtains

µ

∫ ∞

−∞
g(ξ ) dξ = i

∫ ∞

−∞
V (β(ε)ξ )g(ξ ) dξ. (4.5)

Owing to the fact that g(ξ ) is localized around ξ = 0, the integral on the right-hand
side of (4.5) depends on the local behaviour of V (β(ε)ξ ) near ξ = 0. Therefore we can
apply the local expansion (4.2), thus obtaining a linear system for the two unknowns
µR(ε) and ω(ε): [

A0,R −A0,I

A0,I A0,R

] [
µR(ε)

ω(ε)

]
=

[−VMA0,I + V1β
γ (ε)A1,I

VMA0,R − V1β
γ (ε)A1,R

]
(4.6)

where

A0,k =

∫ ∞

−∞
gk(ξ ) dξ, A1,k =

∫ ∞

−∞
|ξ |γ gk(ξ ) dξ, k = R, I, (4.7)

and g(ξ ) = gR(ξ ) + igI (ξ ). The solution of the linear system (4.6) is

−µR(ε) = βγ (ε)
V1(A0,IA1,R − A0,RA1,I )

A2
0,R + A2

0,I

, (4.8)

ω(ε) = VM − βγ (ε)
V1(A0,RA1,R + A0,IA1,I )

A2
0,R + A2

0,I

. (4.9)

Let us first consider the scaling behaviour of the real part of the eigenvalues with ε.
By equating (4.4) and (4.8) it follows that

β(ε) = Bε1/(2+γ ), (4.10)

where B is a positive constant, and therefore from (4.4) one obtains

−µR(ε) ∼ εα, (4.11)

where the exponent α is given by

α =
γ

2 + γ
. (4.12)
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Figure 3. Potential V (x) given by (4.13): (a) h = 1/4, (b) h = 0.1.

Equation (4.12) is the main result regarding universality, since it expresses the scaling
behaviour of the dominant eigenvalue as a function of the local behaviour near the
critical point. In the case of quadratic potentials (as for the sine-flow) γ = 2, and
therefore α = 1/2 as observed numerically. The formal analogy with the Feigenbaum
universality (Feigenbaum 1979) for the period-doubling cascade of unimodular maps
on the interval is evident, since in both cases the scaling exponents depend exclusively
on the local behaviour near the critical point.

In order to assess further the validity of (4.12), let us consider a family of trapezoidal
potentials (see figure 3):

V (x) =




2πx/h, x ∈ ]0, h]
2π, x ∈ ]h, 1/2 − h]
π(1 − 2x)/h, x ∈ ]1/2 − h, 1/2 + h]
−2π, x ∈ ]1/2 + h, 1 − h]
2π(x − 1)/h, x ∈ ]1 − h, 1],

(4.13)

where h ∈ [0, 1/4]. For h = 1/4, V (x) expressed by (4.13) yields a tent potential and
therefore γ = 1. For h → 0, V (x) approaches a square-wave potential, and thus
γ = ∞. For intermediate values of h, V (x) yields a trapezoidal symmetric potential,
which is flat near the critical point, and thus γ = ∞. Equation (4.12) predicts the
value α = 1/3 for h = 1/4, while for any other value of h within the interval [0, 1/4[,
α = 1, i.e. the dominant eigenfunction scales diffusively. These results are confirmed by
numerical spectral simulations (obtained by applying a QR algorithm to the Galërkin
representation of (3.7) expanded in the Fourier basis {ei2πnx}). Figure 4 reviews the
scaling behaviour of the dominant eigenvalue as a function of the Péclet number
(ε is the reciprocal of Pe) for the class of symmetric potentials described above.
Lines (a), (b) and (c) refer to the tent potential ((4.13) with h =1/4), to the sine flow
and to the square-wave potential ((4.13) for h → 0), respectively. As predicted by
(4.12) the value of the exponent α, −µR ∼ Pe−α , is in these three cases α = 1/3, 1/2
and 1, respectively. The spectral behaviour in the presence of the potential (4.13)
for h → 1/4− merits particular interest. Figure 4 shows this case, curves (d–f)
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Figure 4. Dominant eigenvalue of A vs the Péclet number Pe. (a) Tent potential, (b) sine-flow
potential, (c) square-wave potential. (d–f) The potential (4.13) for h =0.05, 0.10 and 0.22,
respectively. Solid lines (a–c) correspond to the theoretical exponent α as predicted by
(4.12) i.e. to α = 1/3, 1/2, 1 respectively. Dotted lines (d–f) are interpolating curves drawn
for visualization purposes.

for h = 0.05, 0.10, and 0.22. The large-Péclet-number scaling is characterized by an
exponent α equal to 1, in agreement with (4.12). Nevertheless, as h approaches the
value 1/4 from below, a crossover occurs in the behaviour of −µR (this is clearly
evident from line (f) in figure 4): at low Péclet numbers the spectral scaling is similar
to that of the tent potential, while the large-Péclet-number limit is dominated by
the local behaviour near the critical point, thus resulting in an asymptotic diffusive
scaling −µR ∼ 1/Pe.

Regarding the imaginary part of the eigenvalues, (4.9)–(4.10) indicate that
ω(ε) = Vm − Dεα , where D is a constant, and therefore limε→0+ ω(ε) = VM , i.e. at
vanishingly small diffusivities, the imaginary part of the eigenvalues approaches the
value of the potential at the critical point. This observation is confirmed by the
numerical spectral results (see e.g. figure 1, showing that the dominant imaginary part
converges to 2π for the ASF).

The results obtained for the simple model flows generated by a symmetric potential
V (x) can be extended to more complex situations. In the case of flows on the unit
square (with periodic boundary conditions, still of the form v(x) = (0, V (x)/2π), but
with V (x) generic smooth periodic function in ]0, 1[, the dominant eigenfunction
of A is still localized and, if all the critical points of V (x) are quadratic, the
dominant eigenvalue scales at large Pe as −µR ∼ Pe−1/2. For example, figure 5(a)
shows a multiscale potential V (x)/2π = sin(2πx) + 0.5 sin(4πx) + 0.25 sin(16πx), and
figure 5(b) the norm of the eigenfunctions for large Pe. This result can be further
generalized to a generic vector potential V (x): the asymptotic scaling (for ε → 0)
of the real part of the dominant eigenvalue is controlled by the largest value of the
exponent γ at its critical points.
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Figure 5. (a) Multiscale potential V (x) (see main text). (b) Corresponding dominant
eigenfunctions of A. The arrow indicates increasing values of Pe = 105, 5 × 105, 106.

It is important to observe that the method used for the estimate of the eigenvalue
scaling is based on exact norm conditions (3.9)–(3.10) for the values attained by
µ, and on the empirical assumption related to the eigenfunction localization (4.1).
There is no perturbative approximation of the eigenfunctions, as e.g. in the Wentzel,
Kramers and Brillouin (WKB) approximation of second-order eigenvalue problems
(Holmes 1995).

4.3. Monotonic potentials

The theory developed in § 4.2 indicates that shear flows on the two-dimensional torus
driven by a continuous velocity field v(x) = (0, v(x)) yield generically a value of
the exponent α = 1/2. Deviations from this scaling behaviour may occur (as e.g. for
the class of potentials (4.12)), but these cases represent paradigmatic model flows,
interesting for theoretical analysis, but of marginal practical relevance.

There is, however, an important and practically relevant case that deserves
discussion, namely the class of potentials V (x) which are non-uniform but monotonic
for x ∈ (0, 1). These model flows can be used, e.g., to predict the homogenization
properties of laminar Couette flows.

The class of monotonic flows in I2 is very peculiar since, due to the periodicity of
the flow domain (the unit square I2 with periodic boundary conditions), the potential
V (x) is no longer continuous at the edges, i.e. V (0) �= V (1). As a prototypical model,
consider the potential given by

V (x) = 4π(x − 1/2). (4.14)

Figure 6(a) shows the behaviour of the dominant eigenfunction for different values of
the Péclet number. As expected, the dominant eigenfunction is localized next to the
discontinuity (corresponding to x = 1). Moreover, the localization occurs solely at one
side of the discontinuity. Owing to the symmetry of the potential V (x) = −V (1 − x),
for each complex eigenvalue/eigenfunction µ, ψ(x), the function ψ(1 − x) is also an
eigenfunction of A associated with the complex-conjugate eigenvalue µ. Therefore,
there exist two different eigenfunctions associated with the dominant eigenvalues
−µR ± iω, with the smallest real part −µR , each of which is localized either to the
left or to the right of the discontinuity (due to periodicity of the flow domain x = 0



232 M. Giona, S. Cerbelli and V. Vitacolonna

0

4

8

12

0.2 0.4 0.6 0.8 1.0

|ψ(x)|

x

(i)

(ii)

(iii)(a)

(b)

10–2

10–1

100

102 104 106

–µR

Pe

(i)

(ii)

Figure 6. (a) Dominant eigenfunction for the discontinuous potential (4.14) V (x) =
4π(x − 1/2). (i)–(iii) Pe = 104, 105 106, respectively. (b) Dominant eigenvalue −µR vs Pe.
◦, The spectral results for the discontinuous potential (4.14). •, Direct numerical simulation
results for the planar Couette flow. (i) and (ii) The theoretical scaling −µR ∼ Pe−1/3.

and x = 1 coincide). Without loss of generality, let us assume that the potential V (x)
is continuous in any open set of (0, 1), monotonically increasing and with a linear
behaviour in the neighbourhood of the discontinuity located at x = 0.

In order to obtain the scaling of the dominant eigenvalue, we can readily follow the
approach developed in § 4.2, by expanding the potential V (x) in the neighbourhood
of the discontinuity:

V (x) = V −
0 + V −

1 x, x < 0

V (x) = V +
0 + V +

1 x, x > 0

}
(4.15)

where V −
0 �= V +

0 . Equation (4.4) holds true, but the application of (4.5) needs some
manipulations. By enforcing the empirical observation that each eigenfunction is
localized on a single side of the discontinuity, (4.5) is modified to

µ

∫ 0

−∞
g(ξ ) dξ = i

∫ 0

−∞
V (β(ε)ξ )g(ξ ) dξ, (4.16)

where the case of eigenfunctions localized to the left of the discontinuity (as in
figure 6a) is considered. By substituting the local expansion (4.15) into (4.16) and
solving the resulting linear system, one finally obtains

−µR(ε) = β(ε)
V −

1 (A−
0,IA

−
1,R − A−

0,RA−
1,I )

(A−
0,R)2 + (A−

0,I )
2

, (4.17)
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where A−
0,k =

∫ 0

−∞ gk(ξ ) dξ and A−
1,k =

∫ 0

−∞ ξ gk(ξ ) dξ , k = R, I . Consequently, the
scaling exponent α for this class of flows is given by

α = 1
3
. (4.18)

The numerical confirmation of (4.18) is depicted in figure 6(b) for the model flow (4.14).
The analysis developed above applies straightforwardly to the class of Couette flows
(planar Couette flow, flow between concentric cylinders). The planar Couette flow is
defined on a circular strip M = {(x, y) | 0 < x < 1, 0 � y � 1}, where periodicity applies
solely to the y-coordinate. Consequently, the boundary conditions for the scalar
field φ(x, t) solution of (1.1) are: periodic boundary condition on the y-coordinate,
φ(x, 0, t) = φ(x, 1, t), ∂φ(x, y, t)/∂y|y=0 = ∂φ(x, 0, t)/∂y|y=1, and zero-flux conditions
at x = 0, 1, i.e. ∂φ(x, y, t)/∂x|x=0 = ∂φ(x, y, t)/∂x|x=1 = 0. The velocity field is
v(x) = (0, V (x)/2π), where V (x) is given by (4.14), and is no longer discontinuous
due to the different geometric structure of the flow domain.

The analytic proof of (4.18) for the planar Couette flow is identical to that developed
above, and therefore is not repeated here. Figure 6(b), line (ii) and dots (•) show the
results for the dominant eigenvalue obtained from the direct numerical simulation
of (1.1) in the planar Couette case, confirming the Pe−1/3 scaling of the convection-
enhanced spectral branch. The case of the two-dimensional flow between concentric
cylinders (not shown, for the sake of brevity) follows the same scaling, and is discussed
in § 6.

5. Quantification of dispersion and homogenization
Section 2 shown the qualitative and phenomenological differences between

dispersion in unbounded flows and homogenization in closed bounded domains. This
Section attempts a quantitative description of the differences, by comparing the closed-
form results obtained for dispersion in unbounded periodic shear flows (Majda &
Kramer 1999) with the spectral results derived in § 4.

In order to compare spectral results obtained for closed domains and effective
diffusivities in unbounded flows, let us consider a two-dimensional periodic shear
model vper(x), defined by the periodization of a simple flow v(x) defined on the unit
square I2:

vper(x + ne1 + me2) = v(x), n, m integers, x ∈ I2, (5.1)

where e1 = (1, 0), e2 = (0, 1), and v(x) = (0, v(x)). Next, we compare this situation
with that associated with the advection–diffusion operator defined in I2, with
periodic boundary conditions (which is therefore a flow on a closed and bounded
manifold).

In the unbounded case, the dispersion properties are fully characterized by the
effective diffusivity tensor D∗ expressed by

D∗ =
1

Pe

(
1 0
0 1 + D(e)

y

)
, (5.2)

where

D(e)
y = Pe2

∞∑
k=1

|v̂k|2
2π2k2

, (5.3)

and v̂k are the Fourier coefficients of the velocity field v(x) =
∑

k �=0 v̂ke
2πikx (Gupta &

Bhattacharya 1986; Majda & Kramer 1999). Equation (5.3) differs from the



234 M. Giona, S. Cerbelli and V. Vitacolonna

corresponding equation reported in Majda & Kramer (1999) by a factor 1/Pe, due to
the different dimensionless formulation of the ADE.

Equation (5.3) implies that the sine-flow model v(x) = sin(2πx), and the model
flows associated with the potentials V (x)/2π defined by (4.13) and by the monotonic
potential (4.14) possess the same scaling behaviour in unbounded dispersion, since
the two eigenvalues of the effective diffusivity tensor scale proportionally to Pe−1 and
Pe at large Péclet number, independently of the local details of the flow model.

Conversely, the spectral properties of the advection–diffusion operator defined in
I2 with periodic boundary conditions are altogether qualitatively different in these
model flows: −µR ∼ Pe−1/2 for the sine-flow, −µR ∼ Pe−1/3 for the tent-map flow
(4.13) where h = 1/4 and for the flow associated with (4.14), and −µR ∼ Pe−1 for
the flow associated with (4.13) with h < 1/4. This result shows unambiguously the
profound differences between homogenization in bounded closed flows and dispersion
in unbounded domains.

As the effective diffusivity tensor accounts for the possible enhancement effects
induced by advection on scalar dispersion, a quantitative parameter serving the
same purpose can be introduced for homogenization in bounded closed flows. More
specifically, one may define the diffusion enhancement factor ED(Pe) as the ratio
between the real part of the dominant eigenvalue belonging to the convection-
enhanced branch of the spectrum −µR(ε) and the dominant diffusive eigenvalue in
the absence of advection −µdif (ε). Since µdif (ε) = C0ε, where C0 is a positive constant
depending exclusively on the flow domain, it follows that at large Pe � 103

ED(Pe) =
µR(ε)

µdif (ε)

∣∣∣∣
ε=Pe

−1
 K

C0

Pe1−α, (5.4)

where we have set −µR(ε)  Kεα , and K > 0 is the prefactor. For α < 1, the diffusion
enhancement factor grows unboundedly as Pe increases with a power law controlled
by the exponent 1 − α. Indeed, the group 1 − α can be regarded as an intensive
measure of mixing efficiency in closed domains.

6. A kinematic view of universality
It is possible to give a kinematic interpretation of the universality in the scaling of

the dominant eigenvalue with respect to the Péclet number. The stretching and folding
action of advection determines a progressive shrinking of the lamellar thickness δadv(t)
in the absence of diffusion, expressed by the relation δadv(t) ∼ t−ζ . In the presence of
diffusion, the characteristic diffusive lengthscale is δ2

dif (t) ∼ 2εt , and the equilibrium
condition between advective stretching and diffusive smoothing is achieved at time tc
defined by the condition

δadv(tc) = δdif (tc). (6.1)

The real part of the dominant exponent −µR corresponds to the reciprocal of the
characteristic time tc, tc  (−µR)−1 at which lamellar shrinking due to advection
is compensated by diffusion. By substituting the scaling expressions for these two
quantities it follows that

(−µR)−1  tc ∼ ε−1/(2ζ+1), (6.2)

and comparison of (4.12) and (6.2) yields ζ = γ −1, which means that the scaling of the
lamellar thickness is inversely proportional to the nonlinearity exponent γ of the flow
near its critical point. The validity of this result can be easily checked numerically
by means of simple kinematic simulations. In fact, the lamellar thickness δadv(t) can
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Figure 7. δadv(t) vs t . (a) The sine-flow, and the upper dashed line is δadv(t) ∼ t−1/2 (γ = 2).
(b) The model flow driven by the tent potential (4.13) with h = 1/4. The lower dashed line is
δadv(t) ∼ t−1 (γ = 1).

be approximatively estimated as follows: consider a material interface Γ (0) and a
cross-section Σ , both orthogonal to the flow, and let Γ (t) be the image of Γ (0) at
time t resulting from the advection action. Let {xi(t)} be the ordered intersections of
Γ (t) with Σ at time t , xi < xi+1, and define δadv = maxi(xi+1 − xi). Figure 7 shows the
simulation results for the two model flows considered in § 4.2 (in these simulations
Γ (0) is the line segment y = 0, and Σ the segment y = 1/2), which agree with the
scaling result expressed by δadv(t) ∼ t−1/γ .

The analysis of the scaling behaviour of δadv(t) provides a simple Lagrangian
approach to infer the scaling of the convection-enhanced branch of the ADE spectrum
without performing any direct spectral estimates. For example, let us consider the
family of Couette flows. Figure 8 shows the scaling of δadv(t) for the planar Couette
flow (4.14), and for the two-dimensional flow between concentric cylinders (Couette
flow sensu stricto), defined in the flow domain M = {(r, θ) | R1 < r < R2 0 � θ � 2π},
expressed in cylindrical coordinates (r, θ ). The dimensionless radii are R1 < R2 = 1.
Kinematic analysis confirms the value α = 1/3 for the planar Couette flow, since
ζ = 1. The Lagrangian analysis of the flow between concentric cylinders is performed
by considering the kinematic equation θ̇ = vθ (r)/r , where vθ (r) = Ωr(1 − R2

1/r2)/(1 −
R2

1/R
2
2), Ω = 1, and an initial segment and the cross-section Σ located at θ = 0, and

θ = π, respectively. The scaling δadv(t) ∼ t−1 characterizing the kinematic properties
independently of R1 supports the observation that −µR(ε) ∼ ε1/3 for this class of
flows.

7. Concluding remarks
Equation (3.5) is the simplest one-dimensional model, not based on any approxi-

mation (such as the lamellar models, see Ottino 1989), which explains the basic features
of dispersion in two-dimensional autonomous bounded flows. Dispersion regimes that
show a real coupling between advection and diffusion (i.e. a scaling exponent α < 1)
are characterized by eigenfunction localization and by the presence of a boundary
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Figure 8. δadv(t) vs t for the Couette flow. (a–c) Inner cylinder radius R1 equal to 0.3, 0.5,
0.7, respectively. Dashed line (d) is the scaling δadv(t) ∼ t−1. (e) The planar Couette flow (4.14).

layer, the width of which scales as β(ε) ∼ ε1/(2γ+1). The scaling behaviour (4.12) for
γ → ∞ has a simple fluid dynamic explanation: whenever there exist finite domains
in which the deformation tensor identically vanishes (possibly present in a Bingham
fluid flow), a diffusive scaling in homogenization kinetics occurs. Spectral analysis of
bounded flows provides the most intuitive and natural quantification of mixing in the
presence of diffusion, since the real parts of the dominant eigenvalues of the different
spectral branches are inversely proportional to the characteristic homogenization
times.

Universality in the advection–diffusion equation (which has some analogies with the
Feigenbaum universality for unimodal maps) has been proved by means of functional
arguments, but has a simple explanation based on purely kinematic properties (as
briefly outlined in § 6). The universal features characterizing the simple class of flows
considered in this article explain the phenomenology observed numerically for several
two-dimensional autonomous closed flows (e.g. the driven cavity flow), namely the
occurrence of an eigenvalue branch that scales as Pe−1/2. Very succintly, this can be
argued as follows. If one expresses the ADE in a streamfunction-based orthogonal
system, the velocity field has only one non-vanishing component (since it is tangent
to the streamlines), analogously to the simple model flows considered in this article.
Since it is a generic property for smooth velocity fields that this non-vanishing entry
has a local behaviour near its critical points which is quadratic (i.e. γ = 2), the scaling
−µR ∼ Pe−1/2 follows. While the Pe−1/2-scaling is generic for autonomous two-
dimensional flows with a local maximum/minimum of the velocity in a stream-based
orthogonal system, there are significant exceptions to it, as the case of the Couette
flow demonstrates, for which −µR ∼ Pe−1/3.

To summarize, the spectral analysis developed in this article provides a complete
understanding of homogenization dynamics in closed and bounded two-dimensional
autonomous flows. Further developments of the theory should be oriented toward the
understanding of spectral properties of the ADE in two-dimensional partially chaotic
flows, which display eigenfunction localization properties around the region of poor
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kinematic mixing (quasi-periodic regions), and consider values of the exponent α

controlling the scaling of the dominant eigenvalue between 0 and 1 (Giona et al.
2004).
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